Voronoi networks and their probability of misclassification
نویسندگان
چکیده
Nearest neighbor classifiers that use all the training samples for classification require large memory and demand large online testing computation. To reduce the memory requirements and the computation cost, many algorithms have been developed that perform nearest neighbor classification using only a small number of representative samples obtained from the training set. We call the classification model underlying all these algorithms as Voronoi networks (Vnets), because these algorithms discretize the feature space into Voronoi regions and assign the samples in each region to a class. In this paper we analyze the generalization capabilities of these networks by bounding the generalization error. The class of problems that can be "efficiently" solved by Vnets is characterized by the extent to which the set of points on the decision boundaries fill the feature space, thus quantifying how efficiently a problem can be solved using Vnets. We show that Vnets asymptotically converge to the Bayes classifier with arbitrarily high probability provided the number of representative samples grow slower than the square root of the number of training samples and also give the optimal growth rate of the number of representative samples. We redo the analysis for decision tree (DT) classifiers and compare them with Vnets. The bias/variance dilemma and the curse of dimensionality with respect to Vnets and DTs are also discussed.
منابع مشابه
تحلیل وضعیت آنژین صدری بر اساس احتمالات طبقه بندی نادرست عامل خطر سیگار در مطالعه قند و لیپید تهران، 79-1378
Misclassification of disease status and risk factors is one of the main sources of error in studies. Wrong assignment of individuals into exposed and non-exposed groups may seriously distort the results in case-control studies. This study investigates the effect of misclassification error on odds ratio estimates and attempts to introduce a correction method. Data on 3332 men aged 30-69 years fr...
متن کاملVoronoi Residuals and their Application in Assessing the Fit of Poin Process Models: An Applied Study
Many point process models have been proposed for studying variety of scientific disciplines, including geology, medicin, astronomy, forestry, ecology and ect. The assessment of fitting these models is important. Residuals-based methods are appropriate tools for evaluating good fit of spatial point of process models. In this paper, first, the concepts related to the Voronoi ...
متن کاملAn application of Measurement error evaluation using latent class analysis
Latent class analysis (LCA) is a method of evaluating non sampling errors, especially measurement error in categorical data. Biemer (2011) introduced four latent class modeling approaches: probability model parameterization, log linear model, modified path model, and graphical model using path diagrams. These models are interchangeable. Latent class probability models express l...
متن کاملDesign and evaluation of two distributed methods for sensors placement in Wireless Sensor Networks
Adequate coverage is one of the main problems for distributed wireless sensor networks and The effectiveness of that highly depends on the sensor deployment scheme. Given a finite number of sensors, optimizing the sensor deployment will provide sufficient sensor coverage and save power of sensors for movement to target location to adequate coverage. In this paper, we apply fuzzy logic system to...
متن کاملPoisson-Voronoi Spanning Trees with Applications to the Optimization of Communication Networks
We de ne a family of random trees in the plane. Their nodes of level k; k = 0; : : : ;m are the points of a homogeneous Poisson point process k, whereas their arcs connect nodes of level k and k + 1, according to the least distance principle: if V denotes the Voronoi cell w.r.t. k+1 with nucleus x, where x is a point of k+1, then there is an arc connecting x to all the points of k which belong ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on neural networks
دوره 11 6 شماره
صفحات -
تاریخ انتشار 2000